Chase Schober

From makerspace.tulane.edu
Revision as of 04:13, 17 September 2017 by Cschober (talk | contribs)
Jump to navigation Jump to search

Chase 1.jpg


MakerSpace Ninja

Email: cschober@tulane.edu

Phone: (504) 722-9514

Major: Engineering Physics

Graduation Date: May, 2018


Projects

  • CNC Mill

Over the summer of 2017, I logged over 300 hours on the Tormach PCNC 770 mill. After training with the available stock in the MakerSpace, I began to machine parts for various research groups on campus. These custom parts varied significantly in complexity and required tolerance. Here are some of the more comprehensive projects that I worked on with a description of their process and purpose.


Tulane University Biomechanics of Growth and Remodeling Lab :

This lab approached me with the engineering plans for an adjustable cruciform to assist in his bio-medical research. They provided me with CAD models of four "slider" parts and one "stamp base". I imported them into Fusion 360, wrote the CAM, and machined the parts using the Tormach PCNC 770. Becuase of the locomotive nature of the sliders, each of their tolerances was ± .002". Each of the stamps required machining on both the top and bottom surface and so were flipped in the vice halfway through the operation. This was an excellent experience in standardizing my measurement procedure and performing the operation so that the two cuts met each other smoothly.

The stamp base required the use of a T-slotter to route the hole for the sliders. I researched the appropriate feeds and speeds of the new tool and manipulated the CAM to produce a cut within specification. This part also required a vice flip in order to machine both sides.

The cruciform, made of the five machined components, is being actively used by the Biomechanics of Growth and Remodeling Lab at Tulane University. Before we came into contact, a machining company had quoted their lab $585.00 for the five parts.

Chase Schuster 2.png Chase Schuster 3.jpeg Chase Schuster 1.jpeg


Tulane University Photonic Materials and Device Lab

I was approached by this lab at the beginning of the summer and provided them with access to the 3D printers and laser engravers in the MakerSpace. As I began to train on the CNC mill, they took interest in my services and hired me as their lab machinist. The bulk of their demand has been aluminum parts for the Full Spectrum Solar Energy Conversion system they are developing. Below are some of the more complex parts that I have machined for them with a technical description.

1) This 4.2" diameter aluminum part contained 30 separate holes with an inside profile. The operations required were straightforward and consisted of milling the stock to size, facing each profile, and then spot drilling each hole. Then, the 30 holes were drilled (requiring three separate twist drill bits). After that, a 3/16", 2 flute end mill was used to perform an adaptive cut on the inside profile. Following the adaptive, the same end mill cleaned up the profile with a contour operation. Finally, an outside contour operation was performed to cut the circular piece out of the rectangular stock. Finish work was performed on a polishing wheel. I machined a duplicate of this part several weeks after to expedite prototyping.

Chase Escarra 1.jpeg

2) This 4.2" diameter aluminum part required tight tolerances for the six external profiles. As it was being used as a stamp to form a polymer mold, the height of the profile was required to be 125 microns ± 25 microns. This was especially difficult because the thickness of the part was .118" and was sensitive to vice buckling as a result. Finally, the grooves in between the profiles were 1 mm wide and required the use of a .5mm end mill. After one failed attempt (as a result of the vice bucking), I met the specifications and the part is now being used to produce polymer molds.

Chase Escarra 2.jpeg

3) This 4.2" diameter aluminum part contained 30 separate holes and seven 125 micron-deep pockets. As it closely resembles a combination of the two previous parts, I was comfortable with the operations and their tolerances.

2017-08-16 20.03.53.jpg

4)

Chase Escarra 4.jpeg

5) I have been heavily involved in the modification of a glass-cutting diamond saw. In addition to machining several iterations of the blade bushing (shown below), I machined the aluminum saw support and am currently working on a safety enclosure and fluid cooling system.

Chase Escarra 5.jpeg



  • CNC Lathe

Cryo-Optic Chamber Lid

Jarrod's Parts

Chase Jarrod 1.jpeg Chase Jarrod 3.png


Fidget Spinner:

Dice:

Spinning Army Star

Chase Star.jpg

  • Laser Engraver

Chess Board:

Arduino Enclosure:

Coasters:

Bowling Set: