
Introduction to MicrocontrollersIntroduction to MicrocontrollersIntroduction to MicrocontrollersIntroduction to Microcontrollers

Programmable digital computers

have become the standard for

replacing complex circuitry and

digital logic chips by allowing users

to utilize a simple programming

language to tell electronic

components how to behave. The

major advantage of these miniature

“computers” is that they can be

programmed to read digital or

analog inputs from the environment,

and then output digital signals based

on the inputs as instructed by the

programmer.

The most common version of these

microcontrollers has been the

“Arduino” and its variants. The basic

Arduino Uno is an 8-bit computer about the size of a credit card which can process many different

inputs and outputs using a very versatile and easy to learn programming environment.

The experiments in this book are designed to introduce the concepts of the Arduino physical computing

system and provide students with a basic understanding for using microcontrollers with projects.

The Sparkfun RedBoardThe Sparkfun RedBoardThe Sparkfun RedBoardThe Sparkfun RedBoard

The microcontrollers that we

will be using are clones of the

Arduino Uno manufactured by

Sparkfun and called

“RedBoards”. They use the

same programming code and

have all of the same features of

and Uno, with a few additions.

Power to the boards can be

provided using a USB cable

connected to a computer, or an

external power supply if

necessary. Programming the

board is done through a USB

connection. At the top right of

the board is a “Reset” button

that can be used to restart a

running program on the board.

The pins on the left side of the

board labelled “Power” are

used to provide power to

circuits connected to the

board. The most commonly

used pins are 5V and GND,

providing positive and negative

power connections.

On the lower left side of the board are 6 “Analog In” pins. These are used as inputs only, and can read a

voltage measurement and assign it a value between 0 (0V) and 1023 (5V). As a voltage reading changes,

they assign an appropriate value which can then be used by the board, thus allowing the board to

convert analog signals from sensors and convert them to digital signals to be read by the computer.

Along the right side of the board are 14 “Digital” pins that can serve as either inputs or outputs,

depending on how they are declared in your program. Digital signals can only be one of two values,

referred to as “HIGH” (5V) and “LOW” (0V), which basically correlate to being “ON” or “OFF”. Some

digital pins are also marked with a tilde (~) symbol which designates them as pins capable of “Pulse

Width Modulation (PWM)”. PWM is a means of simulating an analog output by switching the pin

between HIGH and LOW very quickly, and by varying the speed of the switching they appear as if they

are outputting an analog signal.

External

Power
USB

The Arduino IDEThe Arduino IDEThe Arduino IDEThe Arduino IDE

Programs in the Arduino IDE system are often

referred to as “sketches”, and when you

begin a new sketch you will often see the two

essential pieces of any Arduino code: the

“void setup” and “void loop” commands. You

will write your code in between the curly

brackets that follow these commands, and

every sketch you write must have both of

these commands.

To connect the programming window to your

RedBoard, you can use the “Tools” menu to

select both the board and the communica-

tions port that it is connected to. We will

treat our board as an Arduino Uno and then

select the available COM port that shows up

in the menu. Our connection is shown on the

bottom right of the window.

When your sketch is completed you can check it for errors before loading it to the board by

clicking the “Verify” button on the top menu.

Once your sketch has been verified and no errors are found, you can upload it to the board

by clicking the “Upload” button on the top menu.

If you get an error while uploading your sketch to the board, make sure that your board is plugged into

the computer and you have chosen the correct COM port and board, then try again.

When uploading a program, sometimes the communications port can become “clogged” and will report

an error uploading to the board. This can sometimes be avoided by pressing the “reset” button on the

board before uploading the sketch, or you can simply upload the sketch again until it correctly

communicates with the board.

Experiment 1Experiment 1Experiment 1Experiment 1

In this experiment we will introduce the Arduino programming environment, which is often referred to

as the “Arduino IDE” (Integrated Development Environment). We will set up a very simple circuit with

an LED connected to a digital output pin on the RedBoard, then instruct the board to make the LED blink

on and off at a specified rate.

CIRCUIT SETUP

• CONNECT THE 5V POWER (+) AND THE GROUND (-) PINS ON THE REDBOARD TO THE

POSITIVE AND NEGATIVE BREADBOARD RAILS.

• PLACE THE LED (ANY COLOR) ON THE BREADBOARD AND CONNECT THE NEGATIVE

END TO GROUND USING A 330Ω RESISTOR.

• USE A JUMPER WIRE TO CONNECT DIGITAL PIN 13 ON THE REDBOARD TO THE

POSITIVE END OF THE LED.

PROGRAM

• THE “SETUP” PART OF OUR CODE WILL RUN FIRST AND WILL ONLY RUN ONCE. THIS

IS WHERE WE TELL THE BOARD HOW TO SET ITSELF UP FOR THE INSTRUCTIONS TO

FOLLOW.

• IN THIS CASE, WE WILL NEED TO TELL IT WHICH PIN WE’LL BE USING AND HOW

WE’LL BE USING IT

O THERE ARE 14 DIGITAL PINS ON OUR BOARD, EACH OF WHICH CAN BE

EITHER AN INPUT OR AN OUTPUT.

O BECAUSE WE’LL BE SENDING A SIGNAL FROM THE BOARD TO OUR LED, WE

NEED TO DESIGNATE OUR DIGITAL PIN AS AN OUTPUT.

• THE pinMode FUNCTION TAKES TWO VALUES, THE NUMBER OF THE PIN WE’RE

USING AND THEN EITHER “INPUT” OR “OUTPUT”.

O IN OUR CASE WE ARE USING PIN 13 AS AN OUTPUT.

• REMEMBER TO END EACH COMPLETE STATEMENT WITH A SEMICOLON

PROGRAM

• THE “LOOP” PART OF OUR CODE WILL RUN AFTER SETUP AND WILL CONTINUE

RUNNING UNTIL STOPPED. THIS IS WHERE THE ACTUAL PROGRAM INSTRUCTIONS

ARE LOCATED AND IS USUALLY THE BULK OF THE PROGRAM

• WE WANT TO WRITE A COMMAND TO DIGITAL PIN 13, SO WE USE THE digitalWrite

FUNCTION.

O DIGITAL PINS CAN ONLY BE EITHER “HIGH” (5V) OR “LOW” (0V), SO TO TURN

OUR LED ON, WE WRITE A HIGH COMMAND TO PIN 13.

O ONCE OUR LED IS ONE, WE WILL WRITE A LOW COMMAND TO PIN 13 IN

ORDER TO TURN IT OFF AGAIN.

• IN ORDER TO SLOW DOWN THE PROGRAM, WE INCLUDE A delay FUNCTION

BETWEEN THE WRITE COMMANDS.

O THE NUMBER IN PARENTHESES IS THE NUMBER OF MILLISECONDS THE

PROGRAM WILL WAIT UNTIL EXECUTING THE NEXT LINE OF CODE.

Experiment Experiment Experiment Experiment 2222

In this experiment we will introduce an analog input to our circuit and use it to control the rate at which

an LED blinks on and off. By reading the voltage values across a potentiometer we will see how the

RedBoard translates an analog signal into a digital one.

CIRCUIT SETUP

• CONNECT THE 5V POWER (+) AND THE GROUND (-) PINS ON THE REDBOARD TO THE

POSITIVE AND NEGATIVE BREADBOARD RAILS.

• PLACE THE LED (ANY COLOR) ON THE BREADBOARD AND CONNECT THE NEGATIVE

END TO GROUND USING A 330Ω RESISTOR.

• PLACE A 2KΩ POTENTIOMETER ON THE BREADBOARD AND CONNECT THE OUTSIDE

PINS TO POSITIVE AND GROUND.

• CONNECT DIGITAL PIN 13 ON THE REDBOARD TO THE POSITIVE END OF THE LED.

• CONNECT ANALOG PIN 0 ON THE REDBOARD TO THE CENTER PIN OF THE

POTENTIOMETER.

PROGRAM

• WE CAN INTRODUCE “VARIABLES” TO DEFINE TERMS THAT WILL BE USED IN THE

CODE. THIS OFTEN PROVIDES AN EASIER WAY TO TRACK LATER INSTRUCTIONS.

O HERE WE DESCRIBE TWO “INTEGER” (int) VARIABLES. THE TERM INTEGER

SIMPLY REFLECTS THAT THEY ARE WHOLE NUMBERS.

O WE SET THE TERMS sensorPin EQUAL TO 0, AND ledPin EQUAL TO 13.

O BECAUSE THESE ARE DECALRED BEFORE THE setup PART OF THE SKETCH

THEY ARE KNOWN AS “GLOBAL” VARIABLES, AND CAN BE USED

THROUGHOUT THE SKETCH.

• WE AGAIN SET PIN 13 AS AN OUTPUT USING THE pinMode FUNCTION, HOWEVER,

WE CAN NOW USE THE TERM ledPin SINCE WE DEFINED IT AS EQUAL TO 13.

O WE DO NOT NEED TO SET OUR ANALOG PIN AS AN INPUT, BECAUSE

ANALOG PINS CAN ONLY BE INPUTS.

PROGRAM

• INSIDE OUR LOOP WE WILL DECLARE A “LOCAL” VARIABLE, WHICH ONLY IS TRUE

INSIDE THIS PART OF THE CODE.

O WE’LL CALL THIS int VALUE sensorValue.

• WE WANT TO READ INFO FROM AN ANALOG PIN, SO WE USE THE analogRead

FUNCTION TO READ THE VOLTAGE FROM OUR sensorPin (DEFINED EARLIER).

• TO TURN OUR LED ON, WE WRITE A HIGH COMMAND TO ledPin.

• TO TURN OUR LED OFF, WE WRITE A LOW COMMAND TO ledPin.

• THE INCLUDED delay FUNCTION WILL DEPEND ON THE VALUE BEING READ BY THE

ANALOG PIN FROM THE POTENTIOMETER.

O THE DELAY TIME WILL BE A NUMBER BETWEEN 0 (0V) AND 1023 (5V),

DEPENDING ON THE VOLTAGE READ BY THE ANALOG PIN.

Experiment Experiment Experiment Experiment 3333

This experiment utilizes the Pulse Width

Modulation (PWM) aspect of certain digital

output pins to simulate an analog output.

PWM emits timed pulses oscillating between

HIGH and LOW, for example by changing

between 50% HIGH and 50% LOW it appears

to give a 50% signal (i.e. 2.5V). There are 256

(28) different possible timings, so a 50% signal

would mean setting it to value 128.

CIRCUIT SETUP

• CONNECT THE 5V POWER (+) AND THE GROUND (-) PINS ON THE REDBOARD TO THE

POSITIVE AND NEGATIVE BREADBOARD RAILS.

• PLACE THE RGB LED ON THE BREADBOARD AND CONNECT THE NEGATIVE PIN

(LONGEST PIN) TO GROUND.

• CONNECT THE OTHER THREE PINS OF THE RGB LED TO 330Ω RESISTORS.

• THROUGH THE RESISTORS, CONNECT THE LED’S RED, GREEN, AND BLUE PINS TO

DIGITAL PINS 9, 10, AND 11, RESPECTIVELY, ON THE BOARD.

PROGRAM

• WE WILL SET UP GLOBAL VARIABLES FOR THE PINS WE WILL BE USING.

O THE VARIABLES WILL AGAIN BE INTEGERS (int), BUT WE WILL ALSO

DECLARE THEM TO REMAIN CONSTANT (const) THROUGHOUT THE SKETCH.

O BECAUSE WE’LL BE SENDING A SIGNAL FROM THE BOARD TO OUR LED, WE

NEED TO DESIGNATE OUR DIGITAL PIN AS AN OUTPUT.

• UNDER setup WE WILL AGAIN USE THE pinMode FUNCTION TO SET EACH OF OUR

PINS AS AN OUTPUT.

• INSIDE OUR loop WE WILL SETUP FOUR MORE VARIABLES AS INTEGERS, BUT WE

WILL NOT GIVE THEM VALUES.

O THE VALUES OF THESE VARIABLES WILL BE DETERMINED BY EQUATIONS IN

THE SKETCH.

PROGRAM

• NEXT WE WILL SET UP A “FOR LOOP”. FOR LOOPS RUN OVER AND OVER UNTIL A

CERTAIN CONDITION IS FINALLY MET.

• EVERY for() FUNCTION TAKES THREE STATEMENTS:

O SOMETHING TO DO BEFORE STARTING (SET x = 0)

O A TEST TO PERFORM (IF x < 768, KEEP LOOPING)

O SOMETHING TO DO AFTER EACH LOOP (INCREASE THE VALUE OF X BY 1)

� x++ IS A SHORTCUT FOR x=x+1.

• OUR FOR LOOP WILL START AT X=0, THEN ADD 1 TO X EVERY LOOP, AND KEEP

LOOPING UNTIL X=768.

• AFTER THE for() FUNCTION, EVERYTHING INSIDE THE CURLY BRACKETS IS PART OF

THE FOR LOOP.

PROGRAM

• INSIDE OUR FOR LOOP WE WILL CREATE SEVERAL “IF…ELSE” FUNCTIONS. THESE

FUNCTIONS WILL EXECUTE ONLY IF A CERTAIN CONDITION IS MET.

• AN if() FUNCTION TAKES ONE TEST TO PERFORM, AND THEN WILL RUN THE

FOLLOWING CODE IN CURLY BRACKETS IF THAT TEST IT TRUE. IF THAT TEST IS

FALSE IT WILL MOVE ON TO THE NEXT PART OF THE SKETCH

O OUR TEST WILL BE IF x <= 255. IF THAT IS TRUE THEN IT WILL RUN THE

CODE SETTING THE RED, GREEN, AND BLUE INTENSITY VARIABLES AS

DESCRIBED. OTHERWISE IT WILL MOVE ON.

• AN else if() FUNCTION MEANS IF THE FIRST TEST IS FALSE, BUT A SECOND TEST IS

TRUE, THEN RUN THE FOLLOWING CODE.

• FINALLY, AN else FUNCTION RUNS IF ALL OF THE PREVIOUS TESTS ARE FALSE.

PROGRAM

• FINALLY WE CAN WRITE OUR VALUES TO THE DIGITAL PWM PINS.

• IN ORDER TO SIGNIFY THAT WE WANT TO USE PWM INSTEAD OF A STANDARD

DIGITAL SIGNAL, WE USE THE analogWrite FUNCTION.

O MUCH LIKE digitalWrite, analogWrite NEEDS A PIN NUMBER (RED_PIN) AND

A VALUE (redIntensity).

O WITH analogWrite OUR VALUE NEEDS TO BE AN INTEGER BETWEEN 0 AND

255 SO IT CAN SET THE PULSE WIDTH ACCORDINGLY.

• LAST WE WILL delay FOR 10MS BETWEEN EACH LOOP.

Experiment Experiment Experiment Experiment 4444

In this experiment we will light several LEDs in specific patterns using an “array” to determine which

one’s should be lit. Arrays save a lot of typing as they allow us to hold many values in a single line of

code and then refer back to each value by its “index” number. We’ll also introduce the ability to call up

programs from outside our loop command, which is useful if you want to easily choose from several

different programs to run

CIRCUIT SETUP

• CONNECT THE 5V POWER (+) AND THE GROUND (-) PINS ON THE REDBOARD TO THE

POSITIVE AND NEGATIVE BREADBOARD RAILS.

• SET UP 8 LEDS ON THE BREADBOARD AND CONNECT THEIR NEGATIVE SIDE TO

GROUND USING 330Ω RESISTORS.

• USE JUMPER WIRES TO CONNECT THE LED’S POSITIVE PINS TO DIGITAL PINS 2, 3, 4,

5, 6, 7, 8, AND 9, IN ORDER FROM TOP TO BOTTOM, ON THE BOARD.

PROGRAM

• WE WILL SET UP GLOBAL VARIABLES FOR THE PINS WE WILL BE USING.

O THE VARIABLES WILL BE INTEGERS (int), BUT WE WILL LIST THEM AS AN

“ARRAY” OF VALUES INSTEAD OF LISTING ALL EIGHT INDIVIDUALLY.

• AS SHOWN, OUR ARRAY ledPins[] CONSISTS OF THE STRING OF NUMBERS

SEPARATED BY COMMAS BETWEEN CURLY BRACKETS.

• ONCE THE ARRAY IS DEFINED WE CAN REFER TO EACH NUMBER WITHIN IT BY ITS

“INDEX”, OR THE NUMBER OF ITS POSITION INSIDE THE ARRAY.

O IN OUR ARRAY, THE NUMBER “2” IS INDEX 0 (THE FIRST ENTRY), “3” IS

INDEX 1, “4” IS INDEX 2, AND SO ON.

• WE CAN USE THE INDEX IN OUR setup BY CREATING A FOR LOOP INSTEAD OF

TYPING OUT EVERY SINGLE pinMode ENTRY.

O THE FOR LOOP FIRST SETS THE VARIABLE index = 0, THEN STATES TO RUN

THE LOOP AS LONG AS index <= 7, AND AFTER EACH LOOP INCREASE THE

VALUE OF INDEX BY ONE (index++).

O INSIDE THE FOR LOOP WE SET EACH LED PIN AS AN OUTPUT USING

pinMode.

PROGRAM

• IN THIS EXPERIMENT, WE WILL USE OUR loop STRUCTURE TO CALL UP ANOTHER

PROGRAM FROM SOMEWHERE ELSE IN THE SKETCH BY SIMPLY TYPING THE NAME

OF OUR PROGRAM (oneAfterAnotherLoop()).

• WE CAN CREATE OUR PROGRAM ANYWHERE BY NAMING IT WITH THE void

COMMAND (void oneAfterAnotherLoop()).

• INSIDE OUR PROGRAM WE WILL USE TWO FOR LOOPS TO LIGHT UP THE LEDS IN

ORDER OF THEIR INDEX WITHIN THE ARRAY WE DEFINED EARLIER. for() FUNCTION

TAKES THREE STATEMENTS:

O OUR FIRST LOOP COUNTS UP FROM INDEX 0 TO 7, TURNING ON EACH LED

WITH A HIGH COMMAND AND A delay.

O OUR SECOND LOOP COUNTS DOWN FROM INDEX 7 TO 0, TURNING OFF

EACH LED WITH A LOW COMMAND AND A delay.

� NOTE THAT index-- IS THE SAME AS index++, BUT SUBTRACTING 1

INSTEAD OF ADDING 1.

///

///

Experiment Experiment Experiment Experiment 5555

This experiment will work by reading the values of digital pins as HIGH or LOW and then reacting to their

status. It will also introduce the basic Boolean logic commands for the Arduino IDE. Boolean logic

operators are commonly used in all logical applications, but are especially important in computer

programming.

CIRCUIT SETUP

• CONNECT THE 5V POWER (+) AND THE GROUND (-) PINS ON THE REDBOARD TO THE

POSITIVE AND NEGATIVE BREADBOARD RAILS.

• PLACE 2 BUTTONS AND AN LED ON THE BREADBOARD. PLACE THE BUTTONS SO

THEY STRADDLE THE CENTER BARRIER AS SHOWN IN THE DIAGRAM SO THAT WE

DON’T CONFUSE THE CONNECTED AND UNCONNECTED TERMINALS.

• CONNECT ONE TERMINAL OF EACH BUTTON TO GROUND AND THE OTHER TO

POSITIVE USING A 1KΩ RESISTOR.

O THESE ARE CALLED “PULL-UP RESISTORS” AND KEEP THE VOLTAGE FROM

“FLOATING” WHEN WE ARE TRYING TO MEASURE IT.

• CONNECT THE NEGATIVE SIDE OF THE LED TO GROUND USING A 330Ω RESISTOR.

• CONNECT DIGITAL PINS 2 AND 3 TO THE POSITIVE TERMINAL OF THE BUTTONS,

AND DIGITAL PIN 13 TO THE POSITIVE SIDE OF THE LED.

PROGRAM

• WE WILL SET UP GLOBAL VARIABLES FOR THE PINS WE WILL BE USING.

O OUR THREE PIN VARIABLES WILL BE INTEGER CONSTANTS (const int).

• UNDER setup WE CAN SET UP OUR DIGITAL PINS USING pinMode. IN THIS CASE

OUR TWO BUTTON PINS WILL EACH BE AN INPUT, WHILE THE LED PIN WILL BE AN

OUTPUT.

PROGRAM

• WITHIN OUR loop STRUCTURE, WE CAN SET UP TWO MORE VARIABLES, AND SINCE

THEY DON’T HAVE ASSIGNED VALUES THEY CAN LISTED ON A SINGLE LINE

SEPARATED BY A COMMA.

• THEN WE SET THE VALUES OF THOSE VARIABLES TO THE DIGITAL STATE OF THE

BUTTON PINS USING THE digitalRead FUNCTION.

• WE’LL SET UP ANOTHER if…else STATEMENT WHERE IF THE FIRST TEST IS TRUE THE

LED WILL LIGHT UP, OTHERWISE IT WILL STAY OFF.

• WE CAN USE BOOLEAN LOGIC OPERATORS AS PART OF OUR TEST. THE BASIC

BOOLEAN OPERATORS IN THE ARDUINO LANGUAGE ARE:

O A == B MEANS “EQUIVALENT”. THIS STATEMENT IS TRUE IF BOTH SIDES

ARE THE SAME.

O A && B MEANS “AND”. THIS STATEMENT IS TRUE IF BOTH SIDES ARE TRUE.

O A || B MEANS “OR”. THIS STATEMENT IS TRUE IF EITHER SIDE IS TRUE.

O !A MEANS “NOT”. THIS STATEMENT IS TRUE IF A IS NOT TRUE.

• OUR BOOLEAN OPERATORS IN OUR CODE STATE THAT if BUTTON 1 OR BUTTON 2

ARE LOW, AND BUTTON 1 AND BUTTON 2 ARE NOT LOW, THEN WRITE HIGH TO THE

LED PIN.

O else WRITE LOW TO THE LED PIN.

Experiment Experiment Experiment Experiment 6666

In this experiment we will introduce an analog sensor, specifically a photoresistor which reacts to the

amount of light that strikes its surface. A photoresistor changes its resistance based on the amount of

light striking it, and as the resistance changes we can read the changes in voltage and program our

board to react accordingly. Because sensors can take many values, we often have to convert them into

values that our board can interpret and constrain them from negatively affecting the circuitry.

CIRCUIT SETUP

• CONNECT THE 5V POWER (+) AND THE GROUND (-) PINS ON THE REDBOARD TO THE

POSITIVE AND NEGATIVE BREADBOARD RAILS.

• PLACE THE PHOTORESISTOR AND AN LED ON THE BREADBOARD. CONNECT THE

NEGATIVE SIDE OF THE LED TO GROUND USING A 330Ω RESISTOR.

• CONNECT ONE TERMINAL OF THE PHOTORESISTOR TO POSITIVE AND THE OTHER

TO NEGATIVE USING A 1KΩ PULL-UP RESISTOR.

• CONNECT ANALOG PIN 0 TO THE NEGATIVE TERMINAL OF THE PHOTORESISTOR,

AND DIGITAL PIN 9 TO THE POSITIVE SIDE OF THE LED.

O NOTE THAT DIGITAL PIN 9 IS A PWM PIN.

PROGRAM

• WE WILL SET UP GLOBAL VARIABLES FOR THE PINS WE WILL BE USING AS INTEGER

CONSTANTS, AND A THIRD VARIABLE AS AN INTEGER WITHOUT A DECLARED VALUE.

• UNDER setup WE CAN SET UP OUR DIGITAL LED PIN AS AN OUTPUT USING

pinMode.

O AGAIN, WE DO NOT NEED TO DECLARE OUR ANALOG PIN SINCE IT CAN

ONLY BE AN INPUT.

PROGRAM

• WITHIN OUR loop STRUCTURE, WE SET OUR lightLevel VARIABLE EQUAL TO THE

VOLTAGE READ FROM THE SENSOR PIN USING analogRead.

O REMEMBER, THIS WILL RETURN A VALUE BETWEEN 0 (0V) AND 1023 (5V).

• WE WANT THE BRIGHTNESS OF THE LED TO CORRESPOND TO THE BRIGHTNESS OF

THE LIGHT ON THE PHOTORESISTOR, BUT CAN ONLY WRITE VALUES BETWEEN 0 (0V

AND 255 (5V) USING OUR DIGITAL PWM PIN.

• WE CAN map THE RANGE OF VALUES READ FROM THE ANALOG PIN TO THE RANGE

OF VALUES WRITTEN TO THE DIGITAL PWM PIN.

O THE map FUNCTION HAS 5 ARGUMENTS IN PARENTHESES: THE VARIABLE

TO BE MAPPED, THE MININUM AND MAXIMUM VALUES OF THE INPUT

RANGE, AND THE MINIMUM AND MAXIMUM VALUES OF THE OUTPUT

RANGE.

� map(variable, min_input, max_input, min_output, max_output)

• WE ALSO WANT TO constrain THE VALUES BEING WRITTEN TO THEIR MAXIMUM

AND MINIMUM VALUES, SO THAT ANY STRANGE READINGS WON’T DAMAGE OUR

BOARD.

• FINALLY WE CAN analogWrite OUR MAPPED VALUE TO THE ledPin.

Experiment Experiment Experiment Experiment 7777

Using an analog temperature sensor, we can read data directly from the board using the same USB

connection that we use to program the board. In order to have the measurements relayed to the

computer, we will need to monitor the serial connection between the two and give it

instructions on what data we want sent to the computer. To open a window to read the

information , click the “Serial Monitor” button on the program window.

CIRCUIT SETUP

• CONNECT THE 5V POWER (+) AND THE GROUND (-) PINS ON THE REDBOARD TO THE

POSITIVE AND NEGATIVE BREADBOARD RAILS.

• PLACE THE TEMPERATURE SENSOR ON THE BREADBOARD.

O NOTE THAT THE TEMPERATURE SENSOR LOOKS VERY MUCH LIKE A

TRANSISTOR. THE TEMPERATURE SENSOR WILL HAVE “TMP” WRITTEN ON

IT IN VERY SMALL LETTERS.

• CONNECT ONE TERMINAL OF THE TEMP. SENSOR TO POSITIVE AND THE OTHER TO

NEGATIVE AS SHOWN IN THE DIAGRAM BELOW.

• CONNECT ANALOG PIN 0 TO THE MIDDLE TERMINAL OF THE TEMP. SENSOR.

PROGRAM

• WE WILL SET UP GLOBAL VARIABLES FOR THE ANALOG PIN AS AN INTEGER

CONSTANTS.

• UNDER setup WE NEED TO OPEN A Serial CONNECTION TO THE BOARD AND

SPECIFY THE “BAUD RATE” AT WHICH IT SHOULD RUN. THIS ALLOWS THE BOARD

TO SEND DATA BACK TO THE COMPUTER WHILE THE SKETCH IS RUNNING.

O WE USE THE Serial.begin COMMAND, AND THE BAUD RATE WILL ALMOST

ALWAYS BE 9600.

PROGRAM

• INSIDE THE loop, WE CREATE “FLOATING” VARIABLES (float) FOR THE VOLTAGE,

CELSIUS TEMP. AND FAHRENHEIT TEMP

O FLOATING VARIABLES CAN HAVE DECIMAL POINTS, UNLIKE INTEGER

VARIABLES.

• WE SET OUR VOLTAGE VARIABLE TO THE analogRead VALUE FROM THE SENSOR

MULTIPLIED BY A CONSTANT SPECIFIC TO THE SENSOR. THEN WE SET OUR

TEMPERATURE READINGS BASED ON THE VOLTAGE VALUE.

• THE Serial.print COMMAND TELLS THE BOARD WHAT TO DISPLAY IN THE SERIAL

MONITOR WINDOW.

O FIRST IT WILL PRINT THE TEXT IN QUOTES (voltage:) FOLLOWED BY THE

VALUE OF THE voltage VARIABLE. THEN THE TEXT FOR degC: AND degF:

EACH FOLLOWED BY THEIR VARIABLE VALUES.

• THE FINAL Serial.println COMMAND TELLS THE MONITOR THAT IT IS THE END OF

THE LINE AND IT SHOULD START A NEW LINE.

Experiment Experiment Experiment Experiment 8888

Servo motors are motors which can be programmed to rotate by a specified angle and stop at that

point. They are often used in robotics applications to control movable arms and very precisely geared

mechanisms. However, these motors can be very difficult to program from scratch, so in this

experiment we will introduce the concept of using “libraries” to greatly simplify the programming

aspects of difficult tasks.

Our servo motors can move to any specified angle between 0° and 180°, and we can control their speed

using Pulse Width Modulation.

CIRCUIT SETUP

• CONNECT THE 5V POWER (+) AND THE GROUND (-) PINS ON THE REDBOARD TO THE

POSITIVE AND NEGATIVE BREADBOARD RAILS.

• FROM THE SERVO MOTOR, CONNECT THE RED WIRE TO POSITIVE AND THE BLACK

WIRE TO GROUND

• THE WHITE WIRE FROM THE SERVO MOTOR SHOULD BE CONNECTED TO DIGITAL

PIN 9 ON THE BOARD.

O NOTE THAT DIGITAL PIN 9 IS A PWM PIN.

PROGRAM

• BEFORE ANYTHING ELSE, WE NEED TO #include THE SERVO LIBRARY INTO OUR

PROGRAM. THE LIBRARY WE’LL USE IS CALLED Servo.h.

• THIS LIBRARY ALSO REQUIRES US TO NAME OUR Servo MOTOR, WHICH WE’LL

SIMPLY CALL servo1.

• UNDER setup WE NEED TO SPECIFY WHICH PIN OUR SERVO IS CONNECTED TO, THE

LIBRARY REQUIRES THE attach COMMAND AS FOLLOWS:

o servo_name.attach(pin)

PROGRAM

• NOW THAT THE LIBRARY IS INCLUDED, IT GREATLY SIMPLIFIES THE PROGRAMMING

INSIDE OUR loop.

• WE CON SIMPLY WRITE AN ANGLE (IN DEGREES) TO OUR SERVO AND THE MOTOR

WILL MOVE TO THAT ANGLE:

o servo_name.write(angle)

• BECAUSE THE MOTOR TAKES TIME TO MOVE TO THE SPECIFIED ANGLE, ITS GOOD

PRACTICE TO INCLUDE A delay BETWEEN INSTRUCTIONS. THIS GIVES THE MOTOR

TIME TO MOVE BEFORE THE NEXT INSTRUCTION IS GIVEN.

• WE’LL MAKE OUR SERVO MOTOR TRAVEL FROM 0° TO 90°, THEN FROM 90° TO

180°, AND FINALLY BACK TO 0°.

O NOTE THAT THE MOTOR WILL BE TRAVELLING AT FULL SPEED, SINCE WE

HAVE GIVEN NO INSTRUCTIONS TO SLOW IT DOWN.

Experiment Experiment Experiment Experiment 9999

Most boards are limited in the amount of current they can supply to a device, so some of the more

power-hungry devices will need an external power supply in order to run. However we can still use our

board in conjunction with transistors and relays to control these devices. Transistors can switch current

very quickly, relays are a bit slower but can handle more current, both can be controlled by an Arduino

or similar board.

CIRCUIT SETUP

• CONNECT THE 5V POWER (+) AND THE GROUND (-) PINS ON THE REDBOARD TO THE

POSITIVE AND NEGATIVE BREADBOARD RAILS.

• PLACE THE RELAY ON THE BREADBOARD SO THAT IT STRADDLES THE CENTER GAP.

• WE’LL USE THE TRANSISTOR TO CONTROL THE RELAY, SO CONNECT THE

TRANSISTOR AS SHOWN IN THE DIAGRAM WITH THE MIDDLE TERMINAL (BASE)

CONNECTED TO DIGITAL PIN 2 OF THE BOARD.

• CONNECT THE TWO LEDS TO THE OUTPUT PINS OF THE RELAY, AND CONNECT THE

INPUT PIN TO POWER USING A 330 RESISTOR.

• WHEN SWITCHING THE RELAY WE WILL USE A DIODE TO PROTECT OUR BOARD

FROM “FLY BACK” CURRENT.

PROGRAM

• WE WILL #include THE SERVO LIBRARY CALLED Servo.h INTO OUR PROGRAM, THEN

NAME OUR Servo MOTOR servo1.

• WE’LL CREATE TWO const int FOR THE relayPin AND A timeDelay VARIABLE.

• UNDER setup WE WILL USE pinMode TO SET OUR relayPin AS AN OUTPUT.

PROGRAM

• SINCE WE WILL JUST BE SWITCHING THE RELAY ON AND OFF THROUGH THE

TRANSISTOR, OUR loop WILL SIMPLY CONSIST OF HIGH AND LOW COMMANDS.

O WE’LL USE digitalWrite TO SEND THE relayPin HIGH.

O INCLUDE A BRIEF delay.

O THEN USE digitalWrite TO SEND THE relayPin LOW.

O INCLUDE A delay.

Experiment Experiment Experiment Experiment 11110000

There are some devices for which our board will not be able to produce enough electrical current to run,

such as motors and actuators. In these cases we can use a transistor as a switch for turning on current

from a more powerful supply. Transistors switch fast enough that we can even use PWM control to

adjust the speeds of the motors.

CIRCUIT SETUP

• CONNECT THE 5V POWER (+) AND THE GROUND (-) PINS ON THE REDBOARD TO THE

POSITIVE AND NEGATIVE BREADBOARD RAILS.

• PLACE THE TRANSISTOR ON THE BREADBOARD AS SHOWN IN THE DIAGRAM AND

CONNECT DIGITAL PIN 9 TO THE CENTER TERMINAL THROUGH A 330Ω RESISTOR.

• CONNECT THE NEGATIVE (BLACK) WIRE TO THE TRANSISTOR AND THE POSITIVE

(RED) WIRE TO POSITIVE POWER.

• PLACE A DIODE BETWEEN THE POSITIVE AND NEGATIVE MOTOR CONNECTIONS.

O THE DIODE IS TO PREVENT “FLY-BACK” CURRENT, WHICH FLOWS IN THE

OPPOSITE DIRECTION WHEN THE MOTOR TURNS OFF.

PROGRAM

• DC MOTORS RUN WHEN AN APPROPRIATE VOTAGE IS APPLIED, SO WE DO NOT

NEED ANY TYPE OF LIBRARY TO PROGRAM THEM.

• WE’LL CREATE A const int FOR THE PIN CONNECTED TO THE MOTOR, AND UNDER

setup WE CAN SET THAT DIGITAL PIN TO BE AN OUTPUT.

• WE WILL ALSO OPEN THE Serial CONNECTION SO THAT WE CAN USE THE SERIAL

MONITOR TO SET THE SPEED OF THE MOTOR USING PWM.

PROGRAM

• INSIDE OUR loop WE CREATE THE int VARIABLE speed AND WRITE INSTRUCTIONS

TO THE SERIAL MONITOR USING THE Serial.println COMMAND.

O NOTE THAT THE FINAL Serial.println COMMAND IS LEFT BLANK. THIS IS THE

LINE THAT WILL READ THE NUMBER WE TYPE IN TO THE SERIAL MONITOR.

• WE WANT THIS PROGRAM TO KEEP RUNNING, BUT NOT KEEP WRITING THE SERIAL

MONITOR INSTRUCTIONS OVER FOR EVERY LOOP, SO WE’LL CREATE AN “INFINITE”

while LOOP FOR THE REST OF THE PROGRAM.

O while(true) IS ALWAYS TRUE, SO THIS LOOP WILL NEVER END.

• NEXT OUR SKETCH ASKS IF THERE IS AN available NUMBER GREATER THAN ZERO IN

THE BLANK LINE OF THE SERIAL MONITOR, AND while THERE IS WE WILL PULL THE

INTEGER INTO OUR SKETCH USING THE parseInt() COMMAND.

• WE WANT TO constrain OUR speed IN CASE SOMETHING STRANGE IS ENTERED.

• THE MOTOR SPEED IS THEN DISPLAYED ON THE SERIAL MONITOR, AND WRITTEN

TO THE MOTOR USING THE analogWrite COMMAND.

Experiment Experiment Experiment Experiment 11111111

Our board can also be programmed to display information on an LCD screen. Since programming such

devices can be difficult, we will again rely on libraries to help us. By using the LCD library we can display

measurements and results on the LCD screen similar to the way we have displayed results on the serial

monitor earlier.

CIRCUIT SETUP

• CONNECT THE 5V POWER (+) AND THE GROUND (-) PINS ON THE REDBOARD TO THE

POSITIVE AND NEGATIVE BREADBOARD RAILS.

• PLACE THE LCD SCREEN ON THE BREADBOARD AS SHOWN AND CONNECT THE

POWER AND DIGITAL PINS TO ITS TERMINALS AS SHOWN IN THE DIAGRAM BELOW.

• PLACE THE POTENTIOMETER ON THE BREADBOARD, CONNECT THE OUTSIDE

TERMINALS TO POSITIVE AND GROUND AND CONNECT THE MIDDLE TERMINAL TO

THE LCD SCREEN AS SHOWN IN THE DIAGRAM.

PROGRAM

• FIRST WE NEED TO #include THE LCD LIBRARY, WHICH IS CALLED LiquidCrystal.h.

• FOLLOWING THE LIBRARIES INSTRUCTIONS, WE CAN DESIGNATE THE lcd PINS THAT

WILL BE USED.

• WE CAN begin OUR setup BY SETTING THE SIZE OF OUR LCD DISPLAY. OUR DISPLAY

WILL ALLOW 16 CHARACTERS PER LINE, WITH 2 LINES AVAILABLE.

• IN CASE OF ANY REMNANT DATA FROM ANOTHER SKETCH, WE CAN clear THE

SCREEN.

• THEN WE CAN EXECUTE THE print COMMAND, WITH THE TEXT TO BE PRINTED IN

QUOTES.

O WITHOUR OTHER INSTRUCTION, OUR TEXT WILL PRINT AT THE BEGINNING

(0TH CHARACTER) OF THE FIRST LINE (0TH LINE).

O BECAUSE THIS IS ALL UNDER setup, IT WILL ONLY RUN ONCE AT THE

BEGINNING OF THE SKETCH.

PROGRAM

• THE PART OF THE DISPLAY THAT WILL CONTINUE REPEATING MUST BE PLACED

UNDER THE loop COMMAND.

• SINCE OUR FIRST LINE WAS COVERED UNDER SETUP (POSITON 0,0), WE’LL WANT

TO SET OUR CURSOR POSITION TO THE BEGINNING OF THE SECOND LINE.

O WE USE THE setCursor COMMAND TO START AT THE 0 POSITION (1ST

CHARACTER) OF LINE 1 (2ND LINE).

• OUR SECOND print COMMAND WILL ASK THE BOARD TO SHOW THE NUMBER OF

SECONDS THE PROGRAM HAS BEEN RUNNING.

O TIME IS MEASURED IN MILLISECONDS BY THE BOARD, WE CAN REQUEST

THAT TIME USING THE millis() COMMAND.

Experiment Experiment Experiment Experiment 12121212

We can combine analog inputs with digital outputs to develop a system that is reactive to outside

stimulus. Flex sensors are devices which change their resistance as they are bent, so it would make

sense to combine one with a servo motor which might be used in a robotics setting. The difficulty with

this is often calibrating the sensor’s readings with the desired output to the servo motor, which will be

addressed in this experiment.

CIRCUIT SETUP

• CONNECT THE 5V POWER (+) AND THE GROUND (-) PINS ON THE REDBOARD TO THE

POSITIVE AND NEGATIVE BREADBOARD RAILS.

• FROM THE SERVO MOTOR, CONNECT THE RED WIRE TO POSITIVE, BLACK WIRE TO

GROUND, AND WHITE WIRE TO DIGITAL PIN 9 ON THE BOARD.

• CONNECT THE FLEX SENSOR TO THE BREADBOARD WITH ONE TERMINAL

CONNECTED TO GROUND AND THE OTHER CONNECTED TO POSITIVE THROUGH A

10K PULL-UP RESISTOR.

• FINALLY CONNECT THE POSITIVE TERMINAL OF THE FLEX SENSOR TO ANALOG PIN 0.

PROGRAM

• WE WILL #include THE SERVO LIBRARY CALLED Servo.h INTO OUR PROGRAM, THEN

NAME OUR Servo MOTOR servo1.

• WE’LL ALSO CREATE A const int FOR THE PIN CONNECTED TO THE FLEX SENSOR.

• UNDER setup WE WILL NEED TO attach OUR SERVO TO THE CORRECT DIGITAL PIN.

• WE WILL ALSO OPEN THE Serial CONNECTION SO THAT WE CAN READ THE VALUES

BEING USED BY THE BOARD.

PROGRAM

• INSIDE OUR loop WE CREATE TWO MORE int VARIABLES TO DESCRIBE THE

POSITIONS OF OUR FLEX SENSOR AND SERVO MOTOR.

• THE flexposition VARIABLE IS DEFINED AS THE analogRead VALUE OF THE flexpin.

O THIS VALUE WILL BE BETWEEN 0 (0V) AND 1023 (5V).

• OUR servoposition VARIABLE WILL BE THE ANGLE IT MOVES TO, WHICH MUST BE

BETWEEN 0° AND 180°. THUS WE’LL NEED TO map OUR flexposition VALUES TO

THE RANGE OF POSSIBLE ANGLES.

O INITIALLY WE DON’T KNOW WHAT OUR FLEXPOSITION VALUES WILL BE, SO

WE SIMPLY GUESS AT A RANGE FROM 600 TO 900.

• WE ALSO NEED TO constrain OUR servoposition BETWEEN 0 AND 180.

• THEN WE CAN write THE servopositionTO THE SERVO AS AN ANGLE.

• WE’LL TELL OUR Serial MONITOR TO print THE VALUES OF THE FLEXPOSITION AND

SERVOPOSITION VALUES SO THAT WE CAN MAP THEM MORE PRECISELY.

O ONCE WE SEE THE ACTUAL RANGE OF VALUES THE FLEX SENSOR GIVES US

WE CAN BETTER CALIBRATE IT TO THE SERVO MOTOR.

• FINALLY WE’LL ADD A BRIEF delay TO GIVE THE MOTOR TIME TO CATCH UP.

Experiment Experiment Experiment Experiment 11113333

Another type of analog sensor that we can use is called a “soft potentiometer”. A soft potentiometer

(or “soft pot”) changes its resistance depending on where it is touched, much like the screen of a smart

phone. We can read the variation in voltage that occurs when the soft pot is touched in different

positions and map it to a digital output to control another device, in this case we will use PWM output

to control the colors of an RGB LED.

CIRCUIT SETUP

• CONNECT THE 5V POWER (+) AND THE GROUND (-) PINS ON THE REDBOARD TO THE

POSITIVE AND NEGATIVE BREADBOARD RAILS.

• PLACE THE RGB LED ON THE BREADBOARD AND CONNECT THE NEGATIVE PIN

(LONGEST PIN) TO GROUND.

• CONNECT THE OTHER THREE PINS OF THE RGB LED TO DIGITAL PINS 9, 10, AND 11

ON THE BOARD THROUGH 330Ω RESISTORS.

• CONNECT THE SOFT POTENTIOMETER TO THE BREADBOARD WITH THE OUTSIDE

TERMINALS CONNECTED TO GROUND AND POSITIVE.

• CONNECT THE MIDDLE TERMINAL TO GROUND THROUGH A 10KΩ RESISTOR, AND

ALSO CONNECT TO ANALOG PIN 0 ON THE BOARD.

PROGRAM

• WE CAN CREATE A const int FOR EACH OF THE COLOR PINS FOR THE LED, AND ALSO

FOR THE ANALOG SENSOR PIN CONNECTED TO THE SOFT POT.

• WE CAN ALSO CREATE int VARIABLES FOR EACH OF THE COLORS TO BE WRITTEN TO

THE RGB LED.

• UNDER setup WE WILL SET OUR DIGITAL PINS AS OUTPUTS USING pinMode.

PROGRAM

• INSIDE OUR loop WE CREATE AN int VARIABLE FOR RGBPOSITION AND DEFINE IT AS

THE analogRead VALUE OF THE sensorpin.

O THIS VALUE WILL BE BETWEEN 0 (0V) AND 1023 (5V).

• WE WILL BREAK THE VALUES FROM THE SOFT POT INTO THREE RANGES (ONE FOR

EACH COLOR), THEN map THOSE RANGES ONTO VALUES TO SEND TO THE LED.

• FIRST WE CREATE A RED PEAK CENTERED AT 0 (RANGE FROM 682 TO 1023 AND 0

TO 341) BY mapPING THOSE RGBposition VALUES AND constrainING THEM TO

VALUES FROM 0 TO 255)

O BY ADDING THESE TWO VALUES TOGETHER WE GET OUR RED PEAK AT 0.

• WE CAN SIMPLIFY THIS PROCEDURE BY INCLUDING OUR map AND constrain

FUNCTIONS ON A SINGLE LINE TO GET OUR GREEN PEAK (AT 341) AND OUR BLUE

PEAK (AT 682).

• THEN WE USE analogWrite TO SEND EACH OF OUR VALUES TO THE

CORRESPONDING COLOR PINS FOR THE RGB LED.

